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1. I N T R O D U C T I O N  

Much of point particle physics can be described in terms of Lie algebras 
and their representations. Closed string field theory, on the other hand, leads 
to a generalization of Lie algebra which arose naturally within mathematics 
in the study of deformations of algebraic structures (Schlessinger and 
Stasheff, 1985, n.d.). It also appeared in work on higher spin particles 
(Berends et  aL, 1985). Representation-theoretic analogs arose in the mathe- 
matical analysis of the Batalin-Fradkin-Vilkovisky approach to constrained 
Hamiltonians (Stasheff, 1988). 

The sh Lie algebra of closed string field theory (Saadi and Zwiebach, 
1989; Kugo et al., 1989; Wiesbrock, 1991, 1992a, b; Wittgen and Zwiebach, 
1992; Zwiebach, 1992) is defined on the full Fock complex of the theory, 
with the BRST differential Q. Following Zwiebach (1992), we stipulate that 
the string fields B1, B2,-.. a re  elements of ~ ,  the Hilbert space of the 
combined conformal field theory of matter and ghosts. The (n-fold) string 
product (bracket) for genus 0 is denoted by 

[B1, B2 . . . .  , B,]o 

It has n entries, that is, n states in • .  Since we will deal only with genus 0, 
we will omit the subscript 0 henceforth. The basic equation relating these 
brackets and the BRST operator is: 
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0 =  Q[B1 . . . .  , B,] + ~ + [B1 . . . . .  QBi . . . . .  B,]  
i = 1  

+ ~  a(.,  .)[B,, . . . . .  B#, [B,j+I, . . .  , Bn]]  (1) 

where the second sum is over all unshuffles (see below) and ~(- ,-)  denotes 
an appropriate sign. 

In their work on higher-spin particles, Berends, Burgers, and van Dam 
consider infinitesimal gauge transformations of the form 

5r = 04 + ~ g'T,,(fb, 4) 
n = 2  

where T, is n-linear in ~b and linear in 4 and g is a "coupling constant." 
Notice the unusual ~b-dependence of the transformation. They consider the 
case in which the commutator of two such transformations is again of this 
form, which they use to define 

E41,42]-- ~ g'*lC,(cb, 4x,42) 
n = O  

where C, is n-linear in ~b and linear in each 4i. For this bracket to satisfy 
the Jacobi identity implies a whole sequence of conditions for each order 
g'. In particular, if the 4i and ~bj are fields of the same sort and we take 
C, = T, +1, then to order g2 they find 

3 

cOT2(q~l, q~2, q~s)= ~ +- T2( . . . .  c~O,,'" + ~  + Ta(T1(Oi~, q~,2), q~,3) 
i = 1  

while to higher order, Burgers (1985) finds the full analogs of (1). 
To see the above formulas as a generalization of those for a differential 

graded Lie algebra is the major goal of this paper, hopefully describing the 
mathematical essentials in terms accessible to physicists. 

The concept of Lie algebra can be expressed in several different ways. 
The most familiar are in terms of generators and relations and in terms of 
a bilinear "bracket" on a vector space V satisfying the Jacobi identity. 
In "physical" notation, let Xa be a basis for V. The bracket [ . , .  ] can be 
specified by structure constants C]b via the formula 

[ Xa, Xb ] = C]bXc 

The structure constants are skew-symmetric in the lower indices a, b. 
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A much more subtle description appears in the homological study of 
Lie algebras, but it is this description which is the most useful in homo- 
logical perturbation theory and in mathematical physics in the guise of 
BRST operators for open algebras and in the algebra for closed string 
field theory. This description is implicit in the somewhat more familiar dual 
formulation of the Chevalley and Eilenberg (1948) cochain complex for Lie 
algebra cohomology: An n-eoehain is a skew-symmetric n-linear function 
co: Vx --. x V-~ ~ and the coboundary do.) is defined by 

dco(vl . . . . .  vn+ l) 

= ~ ( - 1 ) ' + J c o ( [ v , , v i ] , v ~  . . . .  ~ , . . . ~ j  . . . .  v,+~) 
i < j  

where the "hatted" variables are to be omitted. With respect to a dual basis 
a b c coa o f  the dual vector space V*, we can write d as - 1/2o co Ca6c~oc. 

We can deal directly with the vectors rather than with the multilinear 
"forms" at the expense of introducing a new point of view and considera- 
tion of skew-symmetric tensors (multivectors). 

A Lie algebra is equivalent to the following data: 
A vector space V (assumed finite dimensional for simplicity of 

exposition). 
The skew (or alternating) tensor products of V, denoted 

with A ~ V= k, the field of scalars, typically the reals N or the complex 
numbers C. A linear map 

d:A v-*A v 

which lowers n by one and is a coderivation determined by dl A 2 V such 
that d2=O. [That d is a eoderivation determined by d lA  2 V means just 
that d(vl)  = 0 and 

d(v I A ..- AVn)= ~ ( - - 1 ) i + J d ( v i A v j ) A v l  A " ' ' ~ i ' ' ' # j ' ' "  A O  n 
i < j  

For example, 

d ( X .  A Xb A X c )  = -C~bX~ A X c  + C;cXe A X b - C ; c X  ~ A Xo 

It may not be immediately obvious, but d restricted to A 2 is to be 
interpreted as a bracket: d(Vl A v2)= Iv1, v2] and d2=  0 is equivalent to 
the Jacobi identity. 
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From the point of view of the skew tensor powers of V, an sh Lie 
algebra (strongly homotopy Lie algebra) is similarly equivalent to a 
straightforward generalization in which d is replaced by a coderivation 

D = dl + d2 + d3 + . . . 

where di lowers n by i -  1, in particular, dn(v~ A . . .  /x vn) ~ V. 
(A further generalization in which there is a term do interpreted as a 

fixed "background" field occurs in Zwiebach's investigation of background 
dependence, but for this there is no mathematical precursor, to our 
knowledge.) 

We say that D is a coderivation to summarize the several conditions 

di(v j A . . .  /x V n ) = E  + di(vi, A ""  A Viy ) A Viy., A ""  A Vi, 

where the sum is over all unshuf f les  of { 1 , . . . ,  n}, that is, all permutations 
that keep il . . . .  , ij and ij+ 1 . . . . .  in in the same relative order. A shuf f le  of 
two ordered sets (decks of cards) is a permutation of the ordered union 
which preserves the order of each of the given subsets; an unshuf f le  reverses 
the process; cf. M~xwell's demon. (The serious issue of signs will be 
addressed below.) 

Notice that the old d corresponds to d2, since d ( v , / x  v2) = [Vl, v2] r V. 
On the other hand, for the new D, the component d 2 no  longer is of 
square zero by itself and hence corresponds to a bracket which does not  
necessarily satisfy the Jacobi identity. Let us look in detail at what can 
happen instead. 

E x p a n d  D 2 = 0 in its homogeneous components and set them separately 
equal to zero. We have then 

0) d2=0 

so (V, dl) is a complex or differential (graded) module. [Usually V is itself 
a graded module and D is a graded  coderivation, which implies appropriate 
signs in applying D to xl /x ... A xn. Also, dl typically raises (or lowers) 
that "internal" degree by 1.] Perhaps  the mos t  impor tan t  example s  in 

phys ics  are the ex ter ior  derivative on di f ferent ia l  f o r m s  and the B R S T  

operator on sui table f ie lds ,  whether  phys ica l  or ghos t ly . )  

1) d l d 2 + d 2 d l = O  

so, with appropriate sign conventions, d2 gives ~i bracket [vl, v2] e V for 
which d 1 is a derivation. 

2) d l d 3 + d 2 d 2 + d 3 d l = O  
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or equivalently 

d2d2 = - ( d i d  3 q- d3dl) 

If we further adopt the notation 

d3(xl ^ x2 / ,  x3)= [xl ,  x2, x 3 ]  

then we have 

[-[VI' V2]' V3] -~ [[ / )1 '  /23]' I32] q- I-I-V2' I)3]' U2] 

= - d l E V l ,  1)2, ld3] -b- [d11)1, v2, v3-] _+ [1)1, d11)2, 1)3] -4" [1)1, v2, dlv3] 

From this, with use of the skew-symmetry of [ - , . ] ,  we see that now the 
Jacobi identity holds modulo the right-hand side. In physical language, the 
Jacobi identity holds modulo a B R S T  exact term. In the language of 
homological algebra, d 3 is a chain homotopy, so we say that (V, d2) 
satisfies the Jacobi identity up to homotopy or (V, dl, d2, d3) is a homotopy 
Lie algebra. The adverb "strongly" is added to refer to the other di. 

In physical notation, restricting d 3 to A 3 V, we can write 

dB(Xa A Xb A Xc )=  C~bcXe 

where C~b C is skew-symmetric in the lower indices. Similarly, we can write 

d, xo = c ~ G  

Just as the Jacobi identity can be written as a quadratic equation in the C~b, 
so equation 2) can be written as a quadratic equation in the C b, C~b, 
and Cebc . 

If we adopt the notation that dl = Q and in general 

C ( x l  A . . -  A x n ) =  Exl ,  x2 . . . .  , x , ]  

then the appropriate homogeneous piece of D 2-- 0 is (up to sign conven- 
tions and up to some constants related to conventions on the definition of 
/~ V) precisely the equation (1) occurring in the "nonpolynomial" version 
of the genus-zero closed string field algebra: The sum is not only over j, but 
also over all (j, n - j )  unshuffles. Making the correspondence precise, 
including the appropriate signs, requires some care, as in the next section. 

In the higher spin particle algebra of Berends et al. (1985), variations 
6, do not respect a strict bracket [~1, e2], but rather an sh Lie structure on 
the space of e's. In the Batalin-Fradkin-Vilkovisky operator for constraints 
forming an "open" algebra with structure functions, one sees a similar 
structure (Stasheff, 1988). 
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This paper is organized as follows: After establishing our notation and 
conventions (especially for signs), we give the formal definition of sh Lie 
structure and verify the equivalence with a formulation in terms of a 
"nilpotent" operator on A sV. Comparison with the physics literature calls 
attention to some further subtleties of signs. Then we establish the sh 
analog of the familiar fact that commutators in an associative algebra form 
a Lie algebra. We next point out the relevance of these structures to 
(N + 1)-point functions in physics. We remark on the distinction between 
these structures on the cohomology level and at the underlying form level 
and conclude with the basic theorem of Homological Perturbation Theory 
relating higher-order bracket operations on cohomology to strict Lie 
algebra structures on forms. 

2. NOTATION AND CONVENTIONS 

In dealing with maps of differential graded vector spaces, it is crucial 
to keep careful track of signs. First, there are the appropriate signs for any 
graded (or super) context. The basic convention is that whenever two sym- 
bols, of degree m and n, respectively, are interchanged, a sign of ( - 1)"" is 
introduced. In particular, if a is a permutation that is acting on a string of 
such symbols, e(a) will denote the sign that results from iteration of the 
basic convention, i.e., e ( a ) - - ( -  l)k, where k is the number of interchanges 
of odd symbols. We also let ( -  1)~ denote the usual sign of the permuta- 
tion o-. It is important to note that e(o-) does not involve ( -  1)~ as a factor. 
However, if all the elements in question have degree 1, then e(a) = ( - 1)~. 

We always regard the symmetric group 5t as acting on V | by 

o-(v~ | - . .  |  v<~)| .--| 

A map of graded vector spaces f :  V | ~ W is called 

symmetric if f (va(1)(~)  . . .  (~) V~(n) ) = e(a) f ( v  I Q " -  Q •n) 

and 

skew symmetric if f (v<a ) | . . .  | v~r = ( -  1)~ e(a)  f ( v  1 . . . .  , v ,)  

for all ~ ~ 5~ In terms o f  a basis for  V, we can write f in terms o f  its eoef- 
fieients f al ..... ; then symmetric or skew symmetric has the usual interpretation 
with respect to permutations o f  a I . . .  an. 

Now let V= {V i} be a graded vector space over a field k. Let T * ( V )  
denote the tensor vector space generated by V, i.e., { V| We do not 
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consider T*(V)  as the tensor algebra, but rather as a coalgebra with the 
standard coalgebra structure given by the diagonal 

A(v~| . . -  |  ~ (vl| . . - | 1 7 4 1 7 4  . . -  | 
j = 0  

[Here V |176 is to be identified with k and the terms with j =  0 or j - - n  are 
of the form 1 | ( . . . )  and ( . . . )  | 1, respectively.] The use of coalgebras is 
an efficient device for some of our expressions, but it is sufficient to follow 
the argument in terms of ordinary tensors. 

In particular, we will make use o f / ~  V, the subspace (in fact, sub- 
coalgebra) of T*(V)  which is fixed under the above action of the 
symmetric group on V | Although we will not need the terminology,/~ V 
is known as the coffee eoeommutative eoaigebra generated by V with 
reduced diagonal given by 

n - I  

A(ul A ... A u , ) =  ~ ~ e ( a ) ( u ~ a ) A  .. .  A u~(j)) |  A uo(~)) 
j = l a  

where a runs through all (j, n - j )  unshuffles. 

3. SH LIE STRUCTURES 

Let V be a differential graded vector space with differential denoted by 
l~ : Vj -~ Vi 1. We first recall the graded version of an ordinary Lie algebra. 

Definition. A graded Lie algebra is a graded vector space V= { Vp } 
together with a graded skew commutative bracket [ - , .  ]: V| V-~ V such 
that Vp | Vq -~ Vp + q satisfying the graded Jacobi identity: 

[u, Iv, w]]  = [[u, v], w] + ( - 1 )  pq Iv, [u, w]]  

An alternative "with the grading reduced by one" (meaning 
Vp | Vq ~ Vp + q_ 1) occurs in the Hochschild cohomology of an associative 
algebra as part of the structure of a Gerstenhaber (1963) algebra, a 
structure which is also making an appearance in physics. 

Examples have existed for a long time. Perhaps the earliest is the 
Schouten bracket of multivectors, although it was not identified as such 
until long after its introduction. Similarly, the Whitehead (1941) product of 
homotopy groups (which has the reduced grading) and the corresponding 
Samelson (1953) product were also not so identified initially. 

We will also consider the differential graded vector space sV, which is 
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defined as isomorphic to V via ( sV) i~  Vi 1 with [l(sv)= -s l l (v) .  The use 
of such a suspension operator s is implicit i n  the Chevalley-Eilenberg 
complex, but for the more complicated sh Lie structures it is best to make 
it explicit. For similar reasons, especially subtlety of signs, and also for 
comparison with the corresponding sh associative algebras, we have chosen 
to express this section in terms of maps l~ and in rather than in terms of 
the dn of the introduction. 

Definition. An sh Lie structure on V is a collection of skew-symmetric 
linear maps ln: @n V--, V of degree 2 - n  (for cochain complexes, and 
n -  2 for chain complexes) such that 

~ e ( a ) ( - 1 ) ~  ( - 1 )  '(j l) li(lj(v,~(1)| "'" @V~(j)) 
i + j - - n + l  6 

| v~(j+l)| ... | = 0  (2) 

where a runs through all (j, n - j )  unshuffles (Jones, 1990). 
We note that the map 12 may be viewed as a usual (graded) Lie 

bracket and that when n = 3 and 13 = 0 ,  the definition yields the usual 
(graded) Jacobi identity. In general, l 3 is a homotopy between the Jacobi 
expression and 0, while the other l, are higher homotopies. 

It is worth calling attention to the matter of degrees, both for the 
forms (e.g., ghost degree in the B R S T  context) and the degree of the N-fold 
operations. The original mathematical formulation as above of sh Lie 
algebras (and their sh associative algebra predecessors) assumed that the 
(twofold) product or bracket had degree zero, i.e., the degree of the bracket 
was the sum of the degrees of the factors and that the degree of d =  dl was 
1 (for cohomology) or - 1  (for homology). The defining equality (1) then 
determines the degrees of the other N-fold brackets. If the bracket should 
itself have a degree (for example, - 1  for the Whitehead product or the 
Gerstenhaber bracket or 1 in some physical examples), then the degrees of 
the other N-fold operations would be adjusted accordingly, as would the 
signs in (2). In particular, as Zwiebach (1992, Section4.1) is careful to 
point, in closed string field theory, the degree is given by the statistics, so 
the degree of the two-fold bracket is 1. As he explains in detail, a simple 
shift in counting degrees and appropriate changes in signs establishes the 
equivalence of our two sets of conventions. This is precisely the shift that 
relates the Whitehead (1941 ) product to the Samelson (1953) product. 

We note that in recent physics literature, the terminology homotopy 
Lie algebra is being used to denote an sh Lie algebra as defined above 
together with a regrading that results from the bracket having degree + 1. 
This of course results in a different set of signs in the defining equations. 
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We now use the graded vector space sV;  recall (sV)i= V:_I. Define 
linear maps ]'n : A" s v--+ s v by 

i , , ( m  A . . .  A 

n/2 
[ ( - 1 ) 2 i = ' l v 2 ' - ' l s l n ( V l |  . . .  |  n even 

= ~ . - - ( - - 1 )  zl~' l /21v2,l  s i n ( v 1 @  . - .  @ V n )  , r/ o d d  ( 3 )  

where Iv~l = degree of v~. 
We may now further ex tend / ' , :A  ~ s V ~  A k - " + l s V  as a coderivation 

with respect to the usual coproduct on A* sV. Explicitly, we have 

= ~ e (a ) l~ ( s v , ( 1 )  A . . .  A SVo(,)) A SV,( ,+ 1) A . . .  A SV~(~) (4) 
cr 

where a runs through all (n, k - n )  unshuffles. Define the degree of an 
element in A* s V  by Isv~ A . . .  A svkl = k + ~ =  ~ Ivil. Note that with this 
grading each [, has degree - 1 .  The ordering convention in (4) with the [, 
terms listed first provides a convenient way of keeping track of the signs 
and the unshuffles. We observe, however, that if an element of A k s V  has 
the form 

S V d ( I )  A - . .  /k SV~r(i  ) A S / ) a ( i + l )  A - - '  A S I ) ~ x ( i + n  ) A ' ' '  A S1)~r(k ) 

where the sequence a ( i +  1) . . . . .  o ( i + n )  respects the original ordering of 
the svi ,  we then have among the summands in (4) an equivalent term of the 
form 

x e ( f f ) S % ( 1 )  A . . .  A S % (  O A [ .(S%(i+a) A . . .  A SV~(i+n) ) A ".. A S%(~) 

by use of the basic sign conventions. 
In order to calculate compositions of the l~ we require the following 

lemma. 

L e m m a .  

f i ( I j ( s v  I A " - "  A SUj) A SVj+ 1 /k . . .  A S V j + i _ l )  

x~i+3-2/2 v ] 
= (__l)z.p=l 2? s l ~ ( l j ( v ~ |  " "  | 1 7 4 1 7 4  "'" @V~+j  1) 

if i + j is even 
i + j 1,/2 

= (_l)r~=1 I ~  , I s l ~ ( l : ( v ~ | 1 7 4 1 7 4 1 7 4 1 7 4  ~) 

if i is even and j is odd 

= (_l)l+Z~+J;'/21vzp-,Isli(lj(Vl@ . . .  @vj)@Vi+l@ ..- @Vi+i_l) 

i f j  is even and i is odd 
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P r o o f  We first assume that both i + j and j are even. Then, by using 
(3), we have 

l i( l i(sv 1 A . . .  A svj) A SVj+1 A . . .  A SVi§ j 1) 
i--2J2 2 = ( -  1)~:~ L, IU2p--II ( - -  1 ) l ~ J ( ~ |  - - - |  + Y--,,,=t I,~/+ ~1 

xsl,(lj(v,| . . .  |174174 - . .  | ~ )  

Note that the sign in the above expression is equal to 

( - 1 )z~ 2-' Iv2~-,I ( _ 1 )J 2 + ~= ,  ivel + z%-_2; 2 I~j+>l = ( _ 1 )zW r21~2~1 

which is what is claimed. The other three cases follow from a similar 
calculation. �9 

Theorem. Let D: A* s V ~  A* s V  be given by D = Y',i [i- Then 0 2 = 0. 

Note.  This gives a generalization of the Chevalley-Eilenberg complex 
for a Lie algebra. The rest of this section is devoted to a proof which 
amounts to checking that the signs cancel appropriately. 

P r o o f  Evaluate D 2 - Z  "+1 [Sj ~ A --. A In fact - -  k = 2  ~-~i+j=k on sv~ sv , .  
we claim that for each k < ~ n +  1, we have Ze+j=k l i l j (svl  ^ "'" A SV,)=0. 
We use (4) to write 

f i [ j ( S t ) l  A ' ' '  A SUn) 

= [ j ( ~  e(a)[ j (sv~( , )  A . . .  A SV<j)) A SVo(j+n A . . .  A SVo(,,)) 

Now use (4) again to evaluate re. At this point we note that a typical 
summand of the resulting expression will have the form 

(a) e(a)[,.([j(svo(l) A " ' "  A Sl)a(j)  ) A S l )a ( j+X)  A " ' "  A S t ) a ( j + i _ l )  ) 

A S t )a ( j+ i )  A " ' "  A SUa(n) 

o r  

( b )  e ( a )  1 / ( s v a ( 1 ) A  - . .  A S~3a(i) ) A l j - (S l )a ( i+ l )  A " '"  A SUa( i+ j )  ) 

A S V a ( i + j + l )  A " '"  A S1)a(n) 

Here a refers to a composition of unshuffles and e(a)  is the resulting 
product of their signs. 

We begin with the type (a) terms. First collect all terms together that 
have identical last n - j - i +  1 entries and denote this sequence of terms 
by sv o. Then 
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Z 
i + j = k  a 

= (--1)Z,=J 1~2,1 s ~ e ( a ) ( -  1) ~ l,(b(v~(1)| .-. | 
i+ k 

@ t ) a ( j + a ) @  "'" @~)a ( j+ i - -1 ) ) )  A S~0Q 

if i + j is even, and 

= ( - 1 ) r ;  ~i -~/~ I~,-,I 

x s ( / L k  ~ e(a)(--  1)~ ( -  1)~ 

x l , ( t j ( v ~ |  . . .  | 1 7 4 1 7 4  . . .  |  
/ 

E e(o ') / /~(SUa(1) A ' ' '  A S U a ( j ) )  A S/)o.(j+l ) A .." A S 1 ) r  S1)Q 

(s)  

A SV e (6) 

if i + j  is odd. Here o- is taken over all (j, i - 1 )  unshuflles in the first 
j +  i -  1 coordinates. Both (5) and (6) are equal to 0 by (2). 

To verify this claim we use the fact that each unshuffle is the product 
of transpositions, and examine the effect of one transposition on the term 

i , ( ~ ( s v ,  ^ . . .  A s 0 A s v j + l  A . . .  A s v , + j _ l )  

while using the lemma to evaluate ]'i6. In fact, the transposition that we 
need consider is a = (j, j + 1). Consequently, we have 

( _ l ) l , ~ j l  1 ,~ ,§  A . . .  A s v j + l )  /, sv j  A . . .  /, s v , + j _ l )  

= ( _  1)lvjl Ivj+~l+l+lvjl +Fv+ll 

x / , ( ~ ( s v l  A - . .  A s v j + l ) 7 ,  s v j ^  . . . / , s v , + j  1) 

= e(a)( - 1) ~ ( - 1 )1~? I~j+11 ( _ 1 )Z~+_~ 2/~ 1~o(2~)1 

x s l , ( l j ( v l  | . ." @ v,,u)) | you+ 1) @ "'" | v i + j _  1) 

by the lemma when i + j  is even. We note that since a ( j ) = j +  1 and since 
j and j + 1 have opposite parity, the exponent is 

i + j 2/2 i + j - - 2 / 2  

p = l  p = l  

The case in which i + j is odd follows by a similar calculation. 
We now turn our attention to the terms of type (b). These terms occur 

in pairs with opposite signs and thus cancel each other out. They will occur 
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when the sequences a(1) . . . . .  a(i) and a ( i+  1) ....... a ( i + j )  are ordered 
with respect to the usual ordering on the integers. We then evaluate 

lilj(svo(1) A . . .  /x svou ) /x sl.)a(i+l) A . . .  A Sl)a(i+j) A $DQ) 

( i I sv~(p ) l )  I~1 = ( - 1 )  

X /i($I)o.(1 ) A . ' -  A SVa(i) ) A l j . (S1)a( i+ , )  A - ' -  A SVa(i+j) ) A SVQ 

X l/(SDo.(1 ) A . . -  A St~o-(i)) A l j ( s / ) o . ( i + l  ) A - - .  A S~)a(i+j) ) A Sl)Q 

On the other hand, 

lj[i(S~)d(1) A "'" A SVa(i+j) A St)Q) 

~-~ Ij-(~-(S1)cr(1 ) A " ' '  A SVa(i) ) A Sl )a( i+i)A " ' "  A SVa(i+j)A SI)Q) 

= ( _  1)(Z~=, I~<~)1)161 ( _  1)1~1 I&l 

Since J[kl = -1 ,  the signs are as claimed. Note that in the evaluation of/~ 
and / j  here, we were only interested in the summands listed. �9 

4. COMMUTATORS IN RELATION TO THE SH ASSOCIATIVE 
CASE 

Physicists often refer to Lie brackets as commutators because com- 
mutators of elements in an associative algebra define a bracket satisfying 
the axioms for a Lie algebra: [-x, y]  = x y - y x  or, in the graded case, 
[ x , y ] = x y - ( - 1 )  Ixllyl yx .  There is a notion of strongly homotopy 
associative (sha) algebra, much older than that of sh Lie algebra (Stasheff, 
(1963b, 1970); it is natural to try to put into the homotopy context the 
canonical construction of a Lie algebra from an associative algebra by use 
of commutators. 

Definition. A strongly homotopy associative (sha) structure on V is 
a collection of linear maps rn. : (~?" V ~  V of degree 2 -  n (for cochain 
complexes, and n -  2 for chain complexes) such that 

~ fl( i, j ,  k ) m i ( v l  Q " " Q (;k- , 
i + j = n + l  k 

Q m j ( v k (  ~ . . .  Q V k + j _ l )  Q . "  Q V . ) = 0  (7) 
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where f i ( i , j , k )  is the sign given by the parity of ( j + l ) k +  
j(n + Z ~ - ~  [xml ). 

Definition. Given a differential graded vector space V with an sha 
structure {m,}, the commutator sh Lie structure is defined on V by 

l , ( v l |  "'" |  (--1)~ e(tr)m,(v~(1)| . . .  | vo(n)) 
t7 

where the sum is taken over all permutations o a S,. 
When n = 2, 

12(v~ | v2) = m2(vl | v~) - ( -  1)1~11 1~21 m2(v2 | v~ ) 

is the graded commutator. The possible lack of associativity of m2 will in 
general prevent the Jacobi expression 

12(12(v~ | v~_) | v3) - ( -  1 ),.~1 I~1 l~(t2(v~ | v3) | v~) 

+ ( -  1)l~tl(l~l + I~1) 12(12(vz @ v3 ) @ vl) (8) 

from being equal to zero. However, with 

/3 ( /91 |174  E (--1)~e(a)m3(voO)@v~(2)@v~(3)) 
o'eS 3 

one may check that (8) is equal to l l l  3 + 131~ where 11 is defined to be m~. 
These details, as well as those required for 4-tensors, are made explicit by 
Jones (1990). The general verification that the above-defined "commutator" 
t,'s satisfy the defining equation for an sh Lie structure will appear 
elsewhere. 

5. ( N +  1)-POINT FUNCTIONS 

As a generalization of Lie algebras, sh Lie algebras appear in closed 
string field theory as symmetries or gauge transformations. The corre- 
sponding Lagrangians consist of (sums of) (N + 1)-point functions for all N 
(Saadi and Zwiebach, 1989; Kugo et al., 1989; Kaku, 1988a-d; Wiesbrock, 
1991, 1992a, b; Zwiebach, 1992; Witten and Zwiebach, 1992). They can be 
regarded as being formed from the N-fold brackets [x~, x2 . . . .  , Xx],  by 
evaluation with a dual field via an inner product, or the ( N +  1)-point 
functions can be described directly. The latter is more appropriate for 
Kontsevich's (1992) new invariants, but we will leave it to him to present 
those details. We adopt Dirac's bra-ket notation and so write Ix) instead 
of just x. We then write (xJ for elements of the dual space. In terms of a 
basis x~ or rather px~), we have a dual basis (x~t with 
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In terms of the N4old bracket, we then define 

{YoYl "''YN} = (Yo[ [Y~, Y2 . . . . .  YN]) 

Zwiebach streamlines the machinery in Kugo et al. (1989), giving the 
classical action in closed string field theory, the gauge transformations, and 
showing the invariance of the action. The classical string action is simply 
given by 

1 KTn 2 
S(W)=~( tP ,  a w ) +  ~ --~-.v { v ' ' ' w }  

n = 3  

The expression {~d...V} contains n terms and will be abbreviated {RJ"}, 
and similarly for [~n, A] below. 

The field equations follow from the classical action by simple 
variation: 

~ ? t  - -  2 

as= --7-, n{a'I', v~  
n = 2  

The gauge transformations of the theory are given by 

t~ A IkI J ) = ~.~ [~", A] 
n=0 

Notice that all the terms of higher order are necessary for these to be 
consistent. 

Similarly, in the sha context (cf. open string field theory as remarked 
below), one can define (N+ 1)-point functions using the structure maps 
m N. A particular example of such a structure which has quite recently 
appeared in the physics literature (Witten, 1992) can be expressed in terms 
of Massey products: Let M be a compact oriented manifold of dimension 
m and H its deRham cohomology. Poincar6 duality gives a graded inner 
product on H and a pairing ( . [ . )  between homology and cohomology. 
Massey products are determined by N-linear maps H |  ... |  H and 
(N+ 1)-point functions then follow. Because the N-linear map has degree 
2 - N and the inner product is nonzero only for classes whose degrees sum 
to m, the only case in which all N-point functions ( y y . - . y )  have the same 
degree (and hence can appear simultaneously in a single Lagrangian) occurs 
when the degree of y is 1 and m = 2. (A threefold Massey product in the 
complement of the Borromean rings detects the nontriviality of that link.) 
With the grading conventions of closed string field theory, as in Zwiebach 
(1992), the nonpolynomial Lagrangian has all fields ~ of  ghost degree 2. 
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6. FIELDS: FORMS VERSUS COHOMOLOGY CLASSES 

Recently the point of view of "cohomological physics" has become 
fairly common. Theories, both Lagrangian and Hamiltonian, are described 
initially in terms of a differential graded vector space or module (the dif- 
ferential is often referred to as a B R S T  operator), hut the physical states are 
often cohomology classes, represented by closed "forms." The structures we 
have been discussing, whether sh Lie or sh associative, may occur at either 
level (Retakh, 1977, n.d.; Barnes and Lambe, 1991; Stasheff, 1963b, 1970). 
For example, closed string field theory (Saadi and Zweibach, 1989; Kugo 
et al., 1989; Zweibach, 1992) exhibits the structure of an sh Lie algebra 
initially at the form level, but there is an induced structure on cohomology 
(where dl = 0, of course). With d l =  0, the bracket [ .,. ] satisfies the Jacobi 
identity strictly, but this does not imply that the higher-order brackets must 
be zero. Witten and Zwiebach (1992) describe the cohomology structure 
only, but there is one implicit at the form level as well, which Zwiebach 
(1992) works out very carefully. 

In the open string field theory of Hata et al. (1986, 1987) the structure 
is homotopy associative (the associating homotopy m 3 corresponds to the 
trilinear operation (o o) on three open string fields), but the higher-order 
homotopies are zero. That is, Hata eta[. define a convolution product of 
string field ~ �9 ud and establish the relation 

(@, W), A ) - ~ ,  ( ~ ,  A)=  _+Q(~o W o A)+  (Q~o W o A) 

-4- ( ~ ,  Q~o A)+  (~o ~ o  QA) 

but, proceeding to four fields, they find (with appropriate signs) 

( I ) , ( W o A o Z ) + ( O o W o A ) , E  ( O , W )  o A o Z  

_+ (i) o (,t, �9 A ) o Z _ + ~ o  ~ o  (A  , ~ )  

vanishes, rather than being equal to a BRST exact term; cf. (7). However, 
there are likely to be nontrivial higher order N-linear operations on the 
cohomology. 

A reasonably general result that derives higher-order operations on 
cohomology even when the underlying differential graded algebra is strictly 
associative or strictly Lie is given by Homological Perturbation Theory 
(HPT): 

Theorem. Let (V, dl) be a differential graded vector space of the 
same homotopy type as a differential graded algebra (either associative or 
Lie) (A, dA). A specific homotopy equivalence induces the structure of an 
sh (respectively associative or Lie) algebra on V. 

002 '32 '7-3 
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